
GEFS Precipitation Forecasts and the Implications of Statistical
Downscaling over the Western United States

WYNDAM R. LEWIS AND W. JAMES STEENBURGH

Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah

TREVOR I. ALCOTT

NOAA/Earth System Research Laboratory, Boulder, Colorado

JONATHAN J. RUTZ

NOAA/NWS/Western Region Headquarters, Salt Lake City, Utah

(Manuscript received 11 October 2016, in final form 3 February 2017)

ABSTRACT

Contemporary operational medium-range ensemble modeling systems produce quantitative precipitation

forecasts (QPFs) that provide guidance for weather forecasters, yet lack sufficient resolution to adequately

resolve orographic influences on precipitation. In this study, cool-season (October–March) Global Ensemble

Forecast System (GEFS) QPFs are verified using daily (24 h) Snow Telemetry (SNOTEL) observations over

the westernUnited States, which tend to be located at upper elevations where the orographic enhancement of

precipitation is pronounced. Results indicate widespread dry biases, which reflect the infrequent production

of larger 24-h precipitation events (*22.9mm in Pacific ranges and *10.2mm in the interior ranges) com-

pared with observed. Performance metrics, such as equitable threat score (ETS), hit rate, and false alarm

ratio, generally worsen from the coast toward the interior. Probabilistic QPFs exhibit low reliability, and the

ensemble spread captures only;30% of upper-quartile events at day 5. In an effort to improveQPFs without

exacerbating computing demands, statistical downscaling is explored based on high-resolution climatological

precipitation analyses from the Parameter-ElevationRegressions on Independent SlopesModel (PRISM), an

approach frequently used by operational forecasters. Such downscaling improves model biases, ETSs, and hit

rates. However, 47% of downscaled QPFs for upper-quartile events are false alarms at day 1, and the en-

semble spread captures only 56% of the upper-quartile events at day 5. These results should help forecasters

and hydrologists understand the capabilities and limitations of GEFS forecasts and statistical downscaling

over the western United States and other regions of complex terrain.

1. Introduction

Accurate quantitative precipitation forecasts (QPFs) in

mountainous regions are particularly challenging for me-

teorologists using current operational ensemble prediction

systems, which lack sufficient resolution to adequately

resolve critical convective and orographic processes that

strongly influence the distribution and intensity of pre-

cipitation (Junker et al. 1992; Kunz and Kottmeier 2006;

Smith et al. 2010; VanHaren et al. 2015).Over thewestern

United States, for example, meteorologists must infer how

local terrain features will modulate rainfall and snowfall,

as well as precipitation impacts on air and ground trans-

portation, water resource and floodmanagement, outdoor

recreation, and avalanche safety (Stewart et al. 1995;

Cohen 1996; Ralph et al. 2006; Neiman et al. 2011; U.S.

Department of the Interior 2012; Black and Mote 2015;

Schirmer and Jamieson 2015; Parker and Abatzoglou

2016). Knowledge of model biases, capabilities, and limi-

tations has the potential to improve forecasts, but is lim-

ited by a scarcity of studies evaluating operational

ensemble model performance in areas of complex terrain

(e.g., Schirmer and Jamieson 2015).

Themajority of westernU.S. precipitation occurs during

the cool season, defined here as October–March, with a

significant portion falling as snow at higher elevations

(Serreze et al. 1999). Large precipitation events with
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high snow levels, many associated with atmospheric rivers

(ARs), yield hydrological extremes that produce flooding,

property and infrastructure damage, and loss of life

(Ralph et al. 2006; Neiman et al. 2011;U.S.Department of

the Interior 2012; Rutz et al. 2014). For example, oro-

graphic enhancement during AR conditions produced all

seven major floods on California’s Russian River from

October 1997 to February 2006 (Ralph et al. 2006). Many

mountain areas and highways in thewesternUnited States

are also susceptible to avalanche hazards, with snowfall

and rainfall increasing the likelihood of natural and

human-triggered avalanches (Tremper 2008; Hatchett

et al. 2017). State Route 210 in Utah, for example, crosses

50 avalanche paths and is hit by an average of 33 ava-

lanches per year (Steenburgh 2014).Winter precipitation–

related motor vehicle and aviation accidents result in

roughly 900 fatalities on average each year across the

United States, with some of the highest standardized

mortality rates occurring in the West (Black and Mote

2015). Nationally, such fatalities amount to more than

double the combined fatalities from lightning, tornadoes,

hurricanes, heat, and cold (Black and Mote 2015).

QPFs are typicallymore skillful in the cool seasonwhen

large-scale dynamic forcing dominates precipitation gen-

eration, as opposed to the localized convection and

weaker dynamic forcing found during the warm season

(Junker et al. 1992; Mullen and Buizza 2001; Baxter et al.

2014). Nevertheless, QPF skill is often lower in moun-

tainous regions, due at least in part to poorly resolved

terrain features (Junker et al. 1992;Yuan et al. 2005; Ikeda

et al. 2010) and, over the western U.S. interior, low spatial

coherence of precipitation events (Serreze et al. 2001;

Parker and Abatzoglou 2016). Complex terrain also

contributes to cyclone displacement errors in numerical

forecasts (Charles and Colle 2009), which in turn affects

the position and timing of precipitation features, as well as

moisture transport associated with atmospheric rivers

(e.g., Rutz et al. 2014, 2015).

This study focuses on the Global Ensemble Forecast

System (GEFS), an operational ensemble modeling sys-

tem run by the National Weather Service (NWS) that is

widely used by forecasters in the western United States.

With an effective horizontal grid spacing of ;33km, the

GEFS is unable to resolve key topographical features and

subsequent effects on precipitation (NOAA 2015). While

we are unaware of any peer-reviewed analyses examining

the performance of the current version of theGEFS,which

became operational in December 2015, Hamill (2012)

showed that an earlier version of the GEFS produced

probabilisticQPFs (PQPFs)with insufficient spread, lower

reliability, and lower Brier skill scores (BSSs) compared

with the European, Canadian, and U.K. ensemble mod-

eling systems. Baxter et al. (2014) also evaluated an earlier

version of the GEFS, showing that GEFSQPFs have little

useful skill over the southeast United States by forecast

day 5.5 (108–132h), and that GEFS PQPFs demonstrate

little to no skill compared with climatological event fre-

quencies by forecast day 6.5 (132–156h).

Approaches aimed at improving QPFs or PQPFs from

coarse-resolution ensembles include ensemble-MOS ap-

proaches (see Wilks 2006a for a review), calibration using

rank histograms (Hamill and Colucci 1997, 1998; Eckel

and Walters 1998), dynamic downscaling (e.g., Stensrud

et al. 1999; Marsigli et al. 2001), bias correction and sta-

tistical disaggregation (Wood et al. 2002), Bayesian model

averaging (Raftery et al. 2005; Sloughter et al. 2007; Fraley

et al. 2010; Schmeits and Kok 2010), analog sorting

(Bontron andObled 2005), reforecast analogs (Hamill and

Whitaker 2006; Hamill et al. 2015), and fitting to censored,

shifted gamma distributions (Scheuerer and Hamill 2015).

In this study, we seek to identify the capabilities and lim-

itations of statistical downscaling based on climatological

precipitation analyses because it is computationally in-

expensive, widely employed in climate and hydrological

applications (e.g., Wilby et al. 1998; Wood et al. 2004;

Gutmann et al. 2012), and used by theWeather Prediction

Center (WPC) andmanyNWSForecastOffices andRiver

Forecast Centers in the western United States.

For these operational applications, such downscaling

typically uses high-resolution (;4-km or ;800-m grid

spacing) precipitation analyses produced by the PRISM

Climate Group at Oregon State University (Daly et al.

1994, 2008) to rescale lower-resolutionmodel guidance and

provide increased spatial detail. Described in greater depth

in section 2b, the approach implicitly assumes climatologi-

cal precipitation distributions and that the small-scale pre-

cipitation variability is directly related to the large-scale

precipitation pattern. This yields climatologically plausible

precipitation distributions, but may be problematic during

storms that are strongly influenced by unresolved meso-

scale processes (e.g., mesoscale precipitation bands,

nonorographic convection, etc.) or feature precipitation–

altitude relationships that deviate from climatology (e.g.,

Steenburgh 2003, 2004), particularly in regions where

orographic enhancement is sensitive to flow direction.

The purpose of this study is to provide a comprehensive

overview of GEFSQPF and PQPF performance in upper-

elevation regions of thewesternUnited States, including an

evaluation of statistical downscaling using high-resolution

PRISM climatology. Specifically, we examine the perfor-

mance of the current operational version of the GEFS

relative to the NOAA/Climate Prediction Center (CPC)

Unified Daily Precipitation Analysis (hereafter the CPC

analysis) and upper-elevation SnowTelemetry (SNOTEL)

observations. These datasets and the methods used for

evaluation are described in section 2. Results are then
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presented in section 3, with conclusions and a discussion of

the significance of our findings provided in section 4.

2. Data and methods

a. Global Ensemble Forecast System

We verify reforecasts (i.e., retrospective forecasts) and

forecasts produced by the current (as of 2 December 2015)

operational version of the GEFS,1 which is based on ver-

sion 12.1.0 of the National Centers for Environmental

Prediction (NCEP) Global Spectral Model [the forecast

component of the Global Forecast System (GFS)], con-

figuredwith 64 vertical levels and a horizontal resolution of

TL574 (;33km) for the first 192h and TL382 (;55km)

from 192 to 384h (NOAA 2015). Ensemble members

consist of a control and 20 perturbations generated with an

ensemble Kalman filter scheme (Wang et al. 2013; Hou

et al. 2015). Reforecasts for the 2013–14 and 2014–15 cool

seasons were obtained from the NOAA Operational

Model Archive and Distribution System (NOMADS)

data server (Rutledge et al. 2006), whereas reforecasts

(1 October–1 December 2015) and forecasts for the re-

mainder of the 2015–16 cool season were provided by

NCEP’s Environmental Modeling Center. Although

GEFS forecasts are currently available four times a day

on a 0.58 latitude–longitude grid, we use 0000 UTC ini-

tialized runs on a 1.08 latitude–longitude grid since this is

the only initialization time and output grid spacing avail-

able on the NCEP NOMADS server for the 2013–14 and

2014–15 reforecast periods. Given that the GEFS is typi-

cally available a few hours after the nominal initialization

time, we define day 1 as the 12–36-h forecast and perform

validation through day 7 (156–180h), which concentrates

on the higher-resolution portion of the GEFS forecasts.

b. Downscaling methodology

The climatology-based statistical downscaling method

used here is similar to an algorithm used frequently by

NWS meteorologists to downscale coarse-resolution

model QPFs during the preparation of graphical fore-

casts for the National Digital Forecast Database. Such

downscaling uses monthly, climatological (1981–2010)

high-resolution (30 arc s, ;800-m grid spacing) precipi-

tation analyses produced by the PRISMClimateGroup at

Oregon State University [analysis technique described by

Daly et al. (1994)]. First, we generate a daily precipitation

climatology for the forecast day of interest by assuming

monthly PRISM values are valid on the 15th of each

month and then interpolating to daily values (Fig. 1a).We

then smooth the daily values to a spatial scale approxi-

mately consistent with the GEFS 1.08 latitude–longitude
grid (Fig. 1b). In operational practice, a variety of tech-

niques are used for this smoothing including Gaussian

filtering (K. Brill, WPC, 2016, personal communication)

and area averaging (T. Barker, NWSFO Boise, 2016,

personal communication). We use an approach similar to

that of the WPC with a Gaussian filter with s 5 0.58,
which yielded the smallest biases compared with area-

average approaches or Gaussian filters with different

s values. Next, we divide the original PRISM precipita-

tion analysis by theGaussian-filtered analysis to obtain an

analysis of the downscaling ratio across the western

United States (Fig. 1c), imposing a lower bound of 0.3 and

an upper bound of 5 to avoid extreme outliers, although

these thresholds are rarely met.

Bilinearly interpolating the GEFS QPF (Fig. 1d) to the

PRISM grid (Fig. 1e) and multiplying by the downscaling

ratio yields the downscaledQPF (Fig. 1f). The downscaling

ratio is typically less than 1 in valleys and basins, leading

to a downscaled QPF that is lower than the GEFS QPF.

Conversely, the downscaling ratio is typically greater than

1 in mountains and upland regions, leading to a down-

scaled QPF that is larger than the GEFS QPF. For point

verification in this study, GEFS QPFs and daily down-

scaling ratios are bilinearly interpolated to observation

locations and multiplied to obtain downscaled QPFs.

c. Precipitation analyses and observations

To identify regional biases in the GEFS reforecasts and

forecasts, we use the CPC analysis on a 0.258 latitude–
longitude grid (Higgins et al. 2000; Xie et al. 2007; Chen

et al. 2008) and bilinearly interpolate GEFSQPFs to the

CPC analysis grid for comparison. Although higher-

resolution precipitation analyses are available [e.g., the

Climatology-Calibrated Precipitation Analysis (Hou et al.

2014)], the lower-resolution CPC analysis is sufficient for

identifying broad regional biases in GEFS forecasts.

Gauge-based verification in upper-elevation regions

uses accumulated [since 0000 Pacific standard time (PST)

1 October] precipitation observations from the SNOTEL

network maintained by the National Resources Conser-

vation Service (NRCS). The automated SNOTEL sta-

tions measure precipitation collected by a large-storage

weighing gauge in imperial units at 0.1-in. (;2.5mm)

precision. SNOTEL stations are typically placed in shel-

tered areas with regionally high snow accumulations and

include an Alter wind shield to reduce undercatch (Yang

et al. 1998; Serreze et al. 1999; Fassnacht 2004). Compa-

rable gauges have shown an undercatch of ;10%–15%

1The reforecasts were generated by NCEP and should not be

confused with those from the NOAA/Earth System Research

Laboratory Physical Sciences Division second-generation refor-

ecast project (Hamill et al. 2013), which uses an older version of the

GEFS run at lower resolution.
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for wind speeds of about 1–2ms21 (Yang et al. 1998;

Fassnacht 2004; Rasmussen et al. 2012), which is a typical

wind speed found in forest clearings that house SNOTEL

stations (Ikeda et al. 2010). Additional factors influencing

SNOTEL precipitation data include transmission errors,

instrument malfunction (e.g., leaks), temperature-based

fluctuations (affecting readings by the pressure trans-

ducer), and snow adhesion to gauge walls (delaying pre-

cipitation measurement). See Serreze et al. (1999) and

Avanzi et al. (2014) for summaries of the capabilities and

limitations of SNOTEL measurements.

Instrument limitations warrant our implementation of

basic quality control to reduce the use of erroneous data.

We begin with hourly cumulative precipitation observa-

tions downloaded from the NRCS, identifying negative

values (typically 299.9 and 20.1 in.). If these values are

surrounded by equal nonnegative values, we replace the

negative values with the surrounding nonnegative value;

otherwise, they are flagged as erroneous. We also adjust

positive values surrounded by equal positive values to the

surrounding positive value, which results in a smoother

hourly time series.We thendiscretely sample the 1200UTC

observations and flag spikes of more than (less than)

0.5 in. above (below) the maximum (minimum) of the

surrounding 20 days. Any flagged data surrounded by

equal values are replaced with the equal value. Then, as

done with the hourly data, we adjust positive values sur-

rounded by equal positive values to the surrounding pos-

itive value, which results in a smoother daily time series

and was a key step in the quality control approach of

FIG. 1. Statistical downscaling example. (a) The 24 Jan 2016 PRISM climatological precipitation. (b) As in (a), but smoothed with

a Gaussian filter. (c) Downscaling ratio derived by dividing (a) by (b). (d) The 24 Jan 2016 GEFS day 1 control forecast as provided by

NCEP. (e) As in (d), but bilinearly interpolated onto a PRISM lat–lon grid. (f) As in (d), but downscaled by multiplying (c) and (e).
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Serreze et al. (1999). After these adjustments, we calculate

the daily (1200–1200 UTC) precipitation for all periods

when data are available for the current and prior day,

setting all negative values to zero and flagging all values in

excess of 5.0 in. as erroneous. The latter removes many

false jumps in the data, along with a small sample of actual

extreme events. The number of these extreme events

is, however, small. Daily precipitation values valid at

1200UTC1October require accumulatedprecipitationdata

from the previous water year and are not included.

After these checks, we remove stations that contain er-

roneous data on 20% of the days during the three cool

seasons. Then, for each remaining station, we calculate the

ratio of cumulative daily precipitation during the three cool

seasons relative to that obtained from the gauge’s accu-

mulated measurement at the end of each cool season. We

then remove stations at which this ratio is 1 (1.5) standard

deviation above (below) the median ratio for all stations.

The more relaxed criterion for lower ratios reflects the

removal of events . 5 in. from the daily precipitation.

Daily precipitation data are then converted from inches to

millimeters. These requirements result in data from 603 of

781 stations being used for the validation.

d. Verification methods

No single statistical measure can adequately diagnose

strengths and weaknesses of a numerical forecast system

(Schaefer 1990). We use a series of measures based on a

23 2 contingency table commonly used for precipitation

validation (Table 1), to provide a broad assessment of the

capabilities of the GEFS and downscaled GEFS. These

measures are described in Mason (2003) and include

Hit rate5
a

a1 c
,

False alarm ratio5
b

a1 b
,

Bias score5
a1 b

a1 c
,

and

ETS5
a2 a

r

a2 a
r
1 c1 b

,

where

a
r
5

(a1 c)(a1 b)

n
.

The hit rate is equal to the fraction of correct forecasts (hits)

to observed events. The false alarm ratio expresses the

fraction of forecasts that do not verify as events. The bias

score represents the fraction of forecasts issued to events

observed. The equitable threat score (ETS) is a common

precipitation verification tool for two-category (dichoto-

mous) events, providing a single value between 1 (perfect

forecast) and 0 (equivalent to a random forecast) (Mason

2003; Hamill and Juras 2006). Varying climatological

event frequencies among stations can affect ETS and

other performance metrics. Following Hamill and Juras

(2006), we attempted to account for this by calculating

ETS as a weighted average of ETS for 10 subgroups of

SNOTEL stations with similar climatological event fre-

quencies, but we found this approach yielded results

similar to traditional ETS calculations. Therefore, we use

the traditional ETS.

The probabilistic verification utilizes reliability dia-

grams [illustrating the relation of forecast probabilities

to observed frequencies; Hamill (1997)], BSS [a mea-

sure of probabilistic forecast skill relative to climato-

logical event frequencies; Brier (1950)], rank histograms

[indicating where observations fall within the ensemble

spread; Hamill (2001)], and additional forecast attributes

to help gauge the overall value of the GEFS (Toth et al.

2003). To account for variations in climatological event

frequencies across stations (Wilks 2006b, chapter 7;

Hamill et al. 2008), reliability diagrams include a histo-

gram inset that displays the frequency of occurrence of

forecast probabilities and the SNOTEL climatological

event frequencies in 10% bins.We also use resampling to

generate 5% and 95% consistency bars, which indicate

the variability among observed frequencies due to

limited counting statistics (Toth et al. 2003; Brocker

and Smith 2007). The approach is similar to the boot-

strapping methods in Hamill et al. (2008) and follows a

technique known as consistency resampling (Brocker

and Smith 2007). We resample 1000 times, using N2

samples, where N is the number of samples in each

forecast probability bin. See Brocker and Smith (2007)

for details.

3. Results

a. GEFS climatology

We begin by comparing mean-daily precipitation in

the CPC analysis with that produced by the GEFS day 1

control forecast to describe the climate of the three cool-

season study periods and identify regional-scale clima-

tological biases in the GEFS (biases and other forecast

TABLE 1. Contingency table used for forecast validation.

Observed

Forecast Yes No

Yes Hit (a) False alarm (b)

No Miss (c) Correct rejection (d)
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FIG. 2. Mean daily precipitation (mm; top scale) from the (a) CPC analysis, (b) SNOTEL

observations, (c) GEFS day 1 (12–36 h) control forecast (CTL) interpolated to the CPC grid, and

(d) GEFS day 1 CTL interpolated to SNOTEL stations. (e) GEFS day 1 CTL bias ratio (bottom

scale) relative to the CPC analysis. (f) As in (e), but relative to SNOTEL observations.
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characteristics exhibited by the GEFS control are simi-

lar to those of the other individual GEFS members).

During the three-cool-season study period, CPC-

analyzed precipitation was heaviest in the coastal

ranges of the Pacific Northwest and northern California

and the Cascade Mountains of Washington and Oregon

(Fig. 2a). Over the interior, precipitation was heaviest

over regions with higher terrain including northern and

central Idaho, northwest Montana, north-central Utah,

western Colorado, and the Mogollon Rim. The interior

northwest was wetter than the interior southwest, which

reflects both climatology and persistent drought condi-

tions over the latter. The GEFS day 1 control captures

the broad regional characteristics of the CPC precipi-

tation distribution (Fig. 2c); however, the ratio of GEFS

control to CPC precipitation (i.e., the bias ratio) re-

veals that the GEFS control is too dry over and up-

stream of topographic barriers and too wet in

downstream valleys and basins (Fig. 2e). When com-

paring the GEFS control at SNOTEL stations (Fig. 2d)

to SNOTEL observations (Fig. 2b), a dry bias is evident

at most stations (Fig. 2f), which are located preferen-

tially in upper-elevation regions. At 22% (60%) of the

SNOTEL stations, the bias ratio is smaller than 0.5

(0.75), indicating a substantial dry bias. By day 5, the

GEFS control bias ratio relative to both the CPC

analysis and SNOTEL stations has shifted to slightly

lower values, revealing a tendency for the GEFS

control (as well as other individual GEFS members) to

become drier with increasing forecast lead time

(cf. Figs. 2e, 3a and 2f, 3b).2 Specifically, the GEFS con-

trol produced 5% less precipitation at day 5 compared

with day 1 at SNOTEL stations and across the western

United States as a whole.

A comparison of the frequency of daily (24h) pre-

cipitation (2.54-mm bins) produced by the GEFS control

with that at CPC analysis grid points (Fig. 4a) and

SNOTEL stations (Fig. 4b) identifies biases in event

frequency as a function of event size. Compared to the

CPC analysis, which spans the low and high elevations of

the western United States, the GEFS day 1 control pro-

duces too many events & 20.3mm and too few events *

22.9mm (Fig. 4a, frequency bias indicated by the black

dotted line and right ordinate). The largest frequency bias

(forecast frequency/observed frequency) is associated

with 5.1-mm events, above which the frequency bias

exhibits a near-monotonic decline with increasing event

size (Fig. 4a). For all western U.S. SNOTEL stations,

events & 7.6mm are predicted at a frequency consistent

with the observations, while events * 10.2mm are asso-

ciated with an underprediction of event frequency that

worsens with increasing event size (Fig. 4b). Consider-

ation of undercatch, as might be expected with SNOTEL

FIG. 3. As in Figs. 2e,f, but for day 5 (108–132 h).

2 Because there are a few days with missing GEFS forecasts,

there is a small difference in the observed mean daily precipitation

on days day 1 forecasts are valid compared with days day 5 fore-

casts are valid. For brevity, we do not present mean daily pre-

cipitation for the latter since it closely matches Figs. 2a,b.
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gauges (Serreze et al. 1999), would further amplify the

underprediction. Similar results are found for day 5 (bias

ratio not shown for clarity). Averaging across all members

has little impact at day 1 when the ensemble spread is

small, but averaging at longer lead times results in an in-

creased number of smaller events and a decreased number

of larger events, exacerbating these frequency biases (bias

ratios for ensemble means also not shown for clarity).

Distinct regional differences in frequency bias are

revealed when grouping SNOTEL stations based on

geography, climate, and model performance. We exam-

ined several regional groupings but ultimately present

results from two highly differentiated regions: Pacific

ranges and interior ranges (Fig. 5; stations from inter-

mediate stations not presented for brevity). In the Pacific

ranges, consisting of stations in the Cascade Mountains,

FIG. 4. (a) Precipitation frequency of the GEFS day 1 (12–36 h) CTL (CTL day 1, red line),

GEFS day 5 (108–132 h) CTL (CTL day 5, dashed red line), GEFS day 1 ensemble mean

forecast (mean day 1, teal line), GEFS day 5 mean (mean day 5, dashed teal line), and the CPC

analysis (CPC, black line) for all CPC analysis grid points in the western United States. Bias

ratio of the GEFS day 1 CTL to CPC analysis (CTL day 1/CPC) indicated by the dotted black

line. (b) As in (a), but for the precipitation frequency at SNOTEL stations (SNOTEL, black

line) and bias ratio of the GEFS day 1 CTL to SNOTEL observations (CTL day 1/SNOTEL,

dotted black line).
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Sierra Nevada, and coastal ranges of the Pacific North-

west, the GEFS control produces similar-to-observed

event frequencies (i.e., 0.8 # frequency bias # 1.2) for

event sizes # 22.9mm (Fig. 6a). For the interior ranges,

consisting of inland stations of the Pacific Northwest,

Utah, and the Rocky Mountains of Wyoming, Colorado,

and New Mexico, similar-to-observed event frequencies

are confined to event sizes # 10.2mm (Fig. 6b). Above

these thresholds, frequency biases in both regions as-

ymptote toward zero with increasing event size, but are

consistently lower in the interior ranges, reflective of a

larger underprediction bias (cf. Figs. 6a,b). We hypothe-

size that the greater underprediction of event frequency

in the interior ranges partly reflects the finescale nature of

the topography and inherently low spatial coherence of

precipitation systems over the western interior (Serreze

et al. 2001; Parker and Abatzoglou 2016).

Bivariate histograms comparing observed and forecast

precipitation provide an additional perspective on the

GEFS control performance (Fig. 7). Skewness in the dis-

tribution of more frequent forecast–observation pairs rel-

ative to the 1-to-1 line confirms that at all but the smallest

thresholds, observed events are more likely than not to

be underforecast at day 1 in the Pacific ranges (Fig. 7a),

with the underforecasting worsening over the interior

ranges (Fig. 7b). To be precise, observed events$ 15.2mm

(5.1mm) in the Pacific (interior) ranges at day 1 are at least

twice as likely to be underforecast as overforecast, whereas

events$ 25.4mm (12.7mm) are at least 5 times as likely to

be underforecast. Compared with day 1, day 5 forecasts

exhibit greater scatter with frequency isolines oriented

more normal to the 1-to-1 line, especially in the interior

ranges, which is consistent with declining skill with in-

creasing forecast lead time (Figs. 7c,d).

b. GEFS downscaled climatology

Next, we evaluate themean-daily precipitation from the

downscaled GEFS control relative to SNOTEL observa-

tions (Fig. 8; see Fig. 2b for SNOTEL mean-daily pre-

cipitation). At days 1 and 5, downscaling addresses the

widespread underprediction evident overmountains in the

GEFS control, yielding wetter precipitation climatologies

at 91% of SNOTEL stations. Considering all western U.S.

stations, downscaling increases themedian bias ratio at day

1 from 0.67 to 1.01 and at day 5 from 0.62 to 0.94. At day 1,

17%, 56% and 27% of the stations have dry (,0.8), near-

neutral (0.8–1.2), and wet (.1.2) bias ratios, respectively,

with a greater fraction of stations over the interior ranges

exhibiting wet bias ratios (Fig. 8c). Consistent with the

GEFS control becoming drier with increasing forecast lead

time, the downscaled GEFS control bias ratios generally

shift slightly to lower values by day 5 (Fig. 8d).

The downscaled GEFS day 1 control also demonstrates

improvements over the undownscaled GEFS control for

event frequency biases at SNOTEL stations. In the Pacific

ranges (Fig. 9a) and the interior ranges (Fig. 9b), event

frequencies are predicted reasonably well at all thresholds

up to 50.8mm, with frequency biases ranging from ap-

proximately 0.8 to 1.2.

Bivariate histograms further illustrate that events at day

1 are less likely to be underforecast by the downscaled

GEFS day 1 control than the undownscaled GEFS con-

trol, with the distribution centered closer to the 1-to-1 line

over both the Pacific and interior ranges, especially for

larger events sizes (cf. Figs. 7a, 10a and 7c, 10c). The large

departures of median observed (forecast) values below

(above) the 1-to-1 line indicate that at larger event

thresholds, an observed event is more likely than not to be

underforecast, but, when an event is predicted, it is more

likely than not to be overforecast, especially over the in-

terior ranges. Like the undownscaled GEFS, downscaled

forecasts exhibit little skill by day 5 (Figs. 10b,d).

c. Deterministic verification

Further verification of model performance focuses on

upper-quartile precipitation events at CPC grid points

and SNOTEL stations. Here, the upper quartile is de-

fined as the 75th percentile of observed precipitation

FIG. 5. Regional classification of SNOTEL stations with 18 3 18
GEFS topography (shaded following scale at bottom).
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events $ 2.54mm (the lowest observable amount at

SNOTEL stations) at each grid point or station.Aside from

performance measures inevitably degrading as thresholds

are increased, the spatial characteristics of the results are

generally consistent for other percentile thresholds (e.g.,

top decile) or absolute precipitation amounts (e.g., 10mm).

When evaluated using the CPC analysis, GEFS day 1

control ETSs are generally highest along the Pacific coast

and decrease toward the interior with considerable spatial

variability (Fig. 11a; other GEFSmembers exhibit similar

performance characteristics). Compared with SNOTEL

observations, GEFS day 1 control ETSs also exhibit a

tendency to decline from the coastal Pacific toward the

interior with considerable spatial variability (Fig. 11b).

ETSs are also generally lower at sites in the interior

southwest compared with the interior northwest. Down-

scaling of the GEFS day 1 control yields ETS improve-

ments at 81% of SNOTEL stations in the western United

States, increasing the median ETS from 0.22 to 0.34. The

greatest improvements are realized over the interior, es-

pecially overUtah andArizona (cf. Figs. 11b,c).Although

ETSs do increase with downscaling over Montana and

Colorado, scores remain relatively low.

Spatial patterns in ETS change minimally with in-

creasing forecast lead time, so we instead examine cumu-

lative statistics for upper-quartile events at all SNOTEL

stations. Not surprisingly,GEFS control ETSs declinewith

increasing forecast lead time, dropping from 0.24 at day 1

FIG. 6. As in Fig. 4b, but for (a) Pacific and (b) interior range SNOTEL stations.
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to 0.11 by day 6 (Fig. 12a), near the 0.1 threshold of useful

skill identified by Baxter et al. (2014). Downscaling in-

creases ETSs for all forecast days (Fig. 12a), with useful

skill extended to day 7. Based on ETSs, the skill of the

downscaled GEFS control at day 4 is approximately

equivalent to the undownscaled GEFS control at day 1.

ETSs for the GEFS mean (i.e., average of the control plus

20 ensemble members) are slightly worse than the control,

whereas the difference between the downscaled control

and downscaledGEFSmean is negligible.We suspect that

the dry bias of the undownscaled GEFS results in lower

ETSs for the GEFS mean compared with the control, es-

pecially at longer lead times when the ensemble spread

is large.

The underprediction of larger events by the GEFS

control is evident in the bias score, with values , 0.6 at

all lead times (Fig. 12b). Thus, for all SNOTEL stations,

the GEFS control produces about half as many upper-

quartile events as observed. Downscaling substantially

increases the occurrence of larger QPFs, yielding a bias

score of;1 through day 7 (Fig. 12b). Bias scores for the

GEFS mean and downscaled GEFS mean are slightly

FIG. 7. Bivariate histograms of (a) GEFS day 1 (12–36 h) CTL and observed precipitation at Pacific ranges

SNOTEL stations. (b) As in (a), but for GEFS day 5 (108–132 h) CTL. (c),(d) As in (a),(b), but for interior range

SNOTEL stations. Horizontal (vertical) bars represent the median observed (forecast) value in each bin. Bars are

not shown for bins with fewer than 100 events.
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lower than the GEFS control and downscaled GEFS

control at day 1, respectively, but decline more rapidly

with increasing lead time as the ensemble spread grows

and averaging reduces the number of upper-quartile

events forecasted (Fig. 12b).

The downscaled GEFS control exhibits a much higher

hit rate than the control, although hit rates do decrease

with increasing lead time, as expected (Fig. 12c).At day 1,

the GEFS control upper-quartile hit rate is 0.32, with

downscaling increasing this value to 0.57. However, the

downscaled GEFS control also produces more false

alarms than the GEFS control, with a false alarm ratio at

day 1 of 0.47 that increases with forecast lead time

(Fig. 12d). The GEFS mean produces hit rates and false

alarm ratios analogous to the control at short lead times

(Figs. 12c,d). At longer lead times, the mean produces

FIG. 8. Mean daily precipitation (mm; top scale) from the (a) GEFS day 1 (12–36 h) downscaled control forecast

(DS CTL) at SNOTEL stations. (b) As in (a), but for day 5 (108–132 h). (c) GEFS day 1 DS CTL bias ratio (bottom

scale) relative to SNOTEL observations. (d) As in (c), but for day 5.
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fewer false alarms but also fewer hits than the control, as

averaging an increasing ensemble spread produces fewer

upper-quartile events.

Broken down by region, all four of these metrics

show a decline in performance from the Pacific ranges to

the interior ranges. In the Pacific ranges, ETSs and hit

rates are higher (Figs. 13a,c), bias scores are closer to 1

(Fig. 13b), and false alarm ratios are lower (Fig. 13d) at

all lead times. Based on ETS, a day 5 GEFS control

forecast over the Pacific ranges is as skillful as a day 1

forecast over the interior ranges (Fig. 13a). ETSs for the

GEFS control in the Pacific ranges are even higher than

those for the downscaledGEFS control over the interior

ranges at all forecast lead times, illustrating that even

with downscaling, forecast performance is worse over

the interior ranges than in the undownscaled GEFS

control in the Pacific ranges. TheGEFS day 1 control hit

rate for upper-quartile events is 0.44 (0.27) over the

Pacific (interior) ranges, with a false alarm ratio of

0.27 (0.41) (Figs. 13c,d). Downscaling improves day

1 hit rates to 0.61 (0.54) but worsens false alarm ratios to

0.33 (0.51).

d. Probabilistic verification

Probabilistic verification similarly concentrates on

upper-quartile events. We begin by evaluating reli-

ability diagrams (Hamill 1997), which compare forecast

probabilities to their observed frequencies, with close

FIG. 9. As in Fig. 6, but for the downscaled GEFS.
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correspondence indicating a reliable ensemble forecast

system (Toth et al. 2003). In the Pacific ranges, reliability

diagrams for day 1 PQPFs exhibit a slopemuch less than 1,

indicating that the GEFS is strongly overconfident (i.e.,

underdispersive) for short-range forecasting (Fig. 14a).

Events occur more frequently than predicted when the

GEFS produces a low-probability forecast and less fre-

quently than predictedwhen producing amedium- to high-

probability forecast. Similar but somewhat lower reliability

occurs in the interior ranges (Fig. 14b). Reliability over the

Pacific ranges improves through day 5 for low-probability

forecasts (i.e.,,50%), but exhibits similar overconfidence

for high-probability forecasts (cf. Figs. 14a,c). The im-

provement over the interior ranges by day 5 is smaller, and

medium- to high-probability forecasts remain strongly

overconfident (cf. Figs. 14b,d).

Ideally, a probabilistic systemexhibits both reliability and

sharpness (the relative magnitude of the ensemble spread),

with an unreliable yet sharp systembeing undesirable (Toth

et al. 2003). However, in addition to overconfidence, day 1

GEFS PQPFs are relatively sharp and frequently produce

extreme low (0%) andhigh forecast (100%)probabilities in

both the Pacific and interior ranges (Figs. 14a,b, inset).

Sharpness decreases by forecast day 5 across the western

United States as extreme low and high forecast probabili-

ties are issued less frequently (Figs. 14c,d, inset).

The BSS (Brier 1950) indicates how a probabilistic

system performs relative to the climatological event

FIG. 10. As in Fig. 7, but for the downscaled GEFS.
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frequencies obtained from the sample climatology

(Toth et al. 2003). A perfect BSS is 1.0, a BSS of 0.0

indicates no skill over climatology, and a negative BSS

indicates skill lower than climatology. The GEFS BSSs

are positive in the Pacific ranges at days 1 and 5, in-

dicating some skill relative to climatology, although the

skill by day 5 is minimal (BSS5 0.17; Figs. 14a,c). BSSs

over the interior ranges are smaller and only slightly

positive on day 5, indicating that GEFS PQPFs exhibit

minimal skill in comparison to climatological proba-

bilities (Figs. 14b,d).

Rank histograms illustrate where observations fall

within the ensemble distribution when sorted from low

to high values (Hamill 2001). Typically, the desired re-

sult is that observations are equally likely to occur be-

tween any two ensemble members. While GEFS PQPFs

in the Pacific ranges generally produce a larger ensem-

ble spread and capture 9% (14%) more of the upper-

quartile events at day 1 (day 5) than in the interior

ranges, we present rank histograms for all SNOTEL

stations since the underlying themes of the results are

generally similar.

Consistent with the aforementioned problems predicting

larger events, the day 1 ensemble spread captures only 18%

of the upper-quartile events, with precipitation amounts

during ;80% of those events exceeding the wettest en-

semble member (Fig. 15a). Upper-quartile events with less

precipitation than predicted by the driest ensemble mem-

ber are relatively rare (3%).

Relatively large ensemble spreads are infrequent at

day 1 (Fig. 15a, inset), which reflects the sharp and un-

derdispersive nature of the GEFS for short-range fore-

casting. Larger ensemble spread sizes occur more

frequently at longer lead times, such as day 5 (Fig. 15b,

inset), allowing the spread to capture 29% of events.

However, precipitation during ;70% of the events still

exceeds the wettest ensemble member.

Downscaled GEFS day 1 and day 5 PQPFs share

similar reliability diagram properties compared with the

undownscaled GEFS (Fig. 14). While downscaling im-

proves the reliability of lower forecast probabilities,

higher forecast probabilities are less reliable. Downscal-

ing inherently yields PQPFs that are less sharp as a result

of the enhancement of GEFS QPFs at high-elevation

SNOTEL stations (Fig. 14, inset). Downscaling worsens

the BSSs over the interior ranges at day 1 and yields a

relatively small improvement at day 5 and in the Pacific

ranges (Fig. 14).

Downscaling reduces sharpness and improves the

portion of upper-quartile events captured by the day 1

ensemble spread from 18% to 38% (cf. Fig. 15a,c).

About 10% of events are overpredicted by all down-

scaled ensemble members at day 1, while ;50% are

FIG. 11. ETSs for upper-quartile daily precipitation events.

(a) GEFS day 1 (12–36 h) CTL forecasts relative to the CPC analysis.

(b) GEFS day 1 CTL relative to SNOTEL observations. (c) GEFS

day 1 downscaled CTL relative to SNOTEL observations.
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underpredicted (Figs. 15c). The downscaled ensemble

spread is expectedly larger at day 5 such that 56% of

upper-quartile events are captured, while;45% remain

underpredicted (Fig. 15d).

4. Conclusions

We have evaluated three cool seasons (October–

March) of reforecasts and forecasts produced by the

operational GEFS over the western United States using

the CPC analysis to identify broad regional biases and

SNOTEL observations for gauge-based validation in

upper-elevation regions. Validation against the CPC

precipitation analysis shows that the GEFS control (as

well as individual members) generally produces too little

precipitation over and upstream of topographic barriers

and too much precipitation in downstream valleys and

basins. Relative to SNOTEL observations, which are

preferentially located in relatively wet upper-elevation

regions, the GEFS control (and other individual mem-

bers) has a pronounced dry bias at most locations. This

dry bias reflects the infrequent production of larger 24-h

precipitation events [i.e., *22.9mm (10.2mm) at stations

in the Pacific (interior) ranges] relative to observations.

Bivariate histograms show that at all but the smallest

thresholds, observed events are more likely than not to be

underforecast, with a greater likelihood in the interior.

For traditional performance measures [e.g., equitable

threat score (ETS), hit rate, bias score, and false alarm

ratio], the performance of the GEFS control (and other

individual members) for upper-quartile precipitation

events is highest in the Pacific ranges and generally

FIG. 12. Statistical measures of GEFS CTL (red dash–dot line/circle), GEFS ensemble mean (mean, teal dash–

dot line/circle), downscaled GEFS control (DS CTL, red line/square), and downscaled GEFS ensemble mean (DS

mean, teal line/square) forecasts of upper-quartile precipitation events at SNOTEL stations with increasing

forecast lead time: (a) ETS, (b) bias score, (c) hit rate, and (d) false alarm ratio.
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degrades toward the interior with considerable spatial

variability. Based on ETS, a day 5 forecast over the Pa-

cific ranges is as skillful as a day 1 forecast over the in-

terior ranges. Hit rates and false alarm ratios are best at

day 1, when the GEFS control upper-quartile-event hit

rate is 0.44 (0.27) in the Pacific (interior) ranges, and the

false alarm ratio is 0.27 (0.41).

Probabilistic verification statistics reflect both the

underprediction biases inherent in theGEFS control (and

individual members), as well as the unreliable (or over-

confident) and underdispersive nature of the GEFS. Ob-

served upper-quartile precipitation events at SNOTEL

stations exceed the wettest member of the GEFS en-

semble at day 1 (day 5) ;80% (;70%) of the time. At

day 1, PQPFs for upper-quartile events are strongly

overconfident, with low-probability (high probability)

forecasts associated with a higher (lower) frequency of

observed events. Reliability improves with increasing

forecast lead time, but high-probability forecast over-

confidence is still evident at day 5. Forecasters should

be aware that although the GEFS has a low frequency

bias for larger events, a high PQPF for a larger event is

likely an overestimate of the actual event probability.

Day 1 and day 5 PQPFs for upper-quartile events in the

Pacific ranges are more skillful than using climatolog-

ical probabilities (BSS 5 0.28 and 0.17, respectively),

but over the interior ranges, such PQPFs exhibit min-

imal improvements over climatological probabilities

(BSS 5 0.14 and 0.06, respectively).

In an attempt to improve GEFS QPFs, we produced

statistically downscaled forecasts derived from high-

resolution climatological precipitation analyses produced

FIG. 13. Regional statistical measures of GEFS CTL (dash–dot line/circle) and downscaled GEFS control (DS

CTL, line/square) forecasts for upper-quartile precipitation events at Pacific (blue) and interior (brown) SNOTEL

stations with increasing forecast lead time. Shown are the (a) ETS, (b) bias score, (c) hit rate, and (d) false

alarm ratio.
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by the PRISM Climate Group at Oregon State Uni-

versity. Such downscaling generally resolves dry biases

at SNOTEL locations, as well as the tendency for most

events to be underforecast. Downscaling also improves

ETSs, hit rates, and bias scores. For example, the down-

scaled GEFS control ETS for upper-quartile events at

day 4 is roughly equivalent to that of the undownscaled

GEFS control at day 1. However, upper-quartile-event

false alarm ratios at day 1 are worsened to 0.33 (0.51) in

the Pacific (interior) ranges. Thus, forecasters should

recognize that while downscaling improves ETSs, hit

rates, and bias scores for upper-quartile events, it also

increases false alarms.

For PQPFs, downscaling worsens reliability by exac-

erbating the overconfidence of high-probability forecasts.

However, at day 1 (day 5), 38% (56%) of upper-quartile

events are captured by the downscaled ensemble spread,

which is an improvement over the undownscaled GEFS.

Nevertheless, most missed events are underforecast by

the wettest ensemble member (rather than overforecast

by the driest member). Downscaled PQPFs in the Pacific

ranges have slightly improved BSSs, while BSSs in the

interior ranges change minimally.

These findings indicate significant limitations inGEFS

QPF and PQPF over the western United States as a

result of insufficient resolution and underdispersion.

FIG. 14. Reliability diagrams for GEFS day 1 (12–36 h) (red) and downscaled GEFS day 1 (blue) forecasts

of upper-quartile events at (a) Pacific and (b) interior range SNOTEL stations. (c),(d) As in (a),(b), but for day 5

(108–132 h). BSS is annotated. Inset histograms indicate the relative frequency of forecast probabilities for GEFS

(red) and downscaled GEFS (blue) forecasts, as well as the climatological event frequencies (black lines).

Whiskers represent 5% and 95% confidence bars.
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These limitations are especially acute for larger events

over the finescale topography of the western interior.

Efforts to improve GEFS precipitation forecasts through

climatology-based downscaling yield some improve-

ments, but also an increase in false alarms, especially over

the interior. The extent to which these results are exac-

erbated by the relatively low-resolution 1.08 grid is unclear
and perhaps some improvement would occur with a

higher-resolution output grid, such as the 0.58 latitude–
longitude grid that is now available. However, even at

native grid spacing (;33km), finescale orographic effects

remain unresolved. Western U.S. forecasters should be

aware of the capabilities and limitations of the GEFS and

downscaled GEFS identified herein. Future work should

examine the performance of alternative downscaling and

ensemble calibration approaches as these may offer a

pathway to improved forecasts by better accounting

for model bias, regime-dependent variations in oro-

graphic enhancement, and probabilistic properties of

the ensemble.
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